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Flow is thought to occur when both task difficulty and individual ability are high. Flow
experiences are highly rewarding and are associated with well-being. Importantly, media
use can be a source of flow. Communication scholars have a long history of theoretical
inquiry into how flow biases media selection, how different media content results in flow,
and how flow influences media processing and effects. However, the neurobiological basis
of flow during media use is not well understood, limiting our explanatory capacity to
specify how media contribute to flow or well-being. Here, we show that flow is associated
with a flexible and modular brain-network topology, which may offer an explanation for
why flow is simultaneously perceived as high-control and effortless, even when the task
difficulty is high. Our study tests core predictions derived from synchronization theory,
and our results provide qualified support for the theory while also suggesting important
theoretical updates.
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Communication has long been interested in the biological and psychological
processes that contribute to well-being. Today, researchers study media
contributions to numerous well-being outcomes, such as recovery from fatigue

Corresponding author: Richard Huskey; e-mail: rwhuskey@ucdavis.edu

Journal of Communication 00 (2021) 1-27 © The Author(s) 2021. Published by Oxford University Press on behalf of 1
International Communication Association. All rights reserved. For permissions, please email: journals.permissions@oup.com

1 Z0Z JaquiaAopN /| uo npa‘sirepon@Asysnymi Ag S195Z9/y10gebl/ool/e601 01 /10p/aonie-aoueApe/ool/woo dno-oiwepese//:sdiy woll papeojumod


https://orcid.org/0000-0002-4559-2439
http://orcid.org/0000-0002-1404-0025
http://orcid.org/0000-0002-0013-1612
http://orcid.org/0000-0001-9642-8885
http://orcid.org/0000-0002-0684-8227
http://orcid.org/0000-0002-7547-5903

Flow Dynamics During Media Use R. Huskey et al.

(Reinecke, Hartmann, & Eden, 2014), goal-attainment (Prestin & Nabi, 2020), and
enjoyment (Tamborini, Bowman, Eden, Grizzard, & Organ, 2010). A related line of
research studies flow (Csikszentmihalyi, 1990) during media use. Flow is an autote-
lic experience that emerges when task difficulty and individual ability are both high
and balanced. Autos (self) telos (end or goal) experiences are hedonically marked,
intrinsically rewarding, and contribute to well-being via successful goal-pursuit
(Bernecker & Becker, 2020; Tepper & Lewis, 2021) and resilience (Tabibnia, 2020).
Flow also facilitates well-being during periods of uncertainty (Rankin, Walsh, &
Sweeny, 2019) and even during the COVID-19 pandemic (Sweeny et al., 2020).
Finally, there is evidence indicating that flow is protective against depression and
burnout (Mosing et al., 2018).

Although the contribution of media to flow experiences and well-being has been
extensively investigated, the cognitive and neural mechanisms that underpin flow
processes remain unclear. Addressing this gap is a necessary first-step that will en-
able subsequent research linking neural responses associated with flow to specific
well-being outcomes. We draw on synchronization theory (Weber, Tamborini,
Westcott-Baker, & Kantor, 2009), which specifies a neurobiological model for how
media content contributes to flow experiences. In two studies, we show that a bal-
ance between media difficulty and individual ability results in high self-reported
flow, high levels of motivated attention, and a flexible and modular brain network
topology. We will show how this brain network topology may explain several phe-
nomenological characteristics of flow experiences. Our results offer a more complete
explanation (Huskey et al., 2020) of media contributions to flow while also provid-
ing insights into the neural basis of flow.

In what follows, we articulate what is currently known about flow during media
use and how it is possible to empirically determine when media use results in flow.
We then describe the synchronization theory of flow during media use and explain
the brain network properties associated with flow experiences. Finally, we use classic
criteria for evaluating theoretical contributions to communication as a framework
for considering how our study advances flow theory and research.

Flow and Media Use

Flow theory (Csikszentmihalyi, 1990) proposes that individuals can find high levels
of intrinsic reward in everyday experiences and that regularly experiencing flow is
central to well-being. Flow is characterized by intense concentration, a loss of self-
consciousness, a merging of action and awareness, a strong sense of control, a dis-
torted sense of time, perceived effortlessness, and high levels of intrinsic reward.
These outcomes result from three causal antecedents: clear and distinguishable
goals, immediate performance feedback, and a balance between high task difficulty
and high levels of individual ability at the task.

Media content varies in difficulty, and individuals vary in cognitive ability.
Accordingly, Sherry (2004) argues that media can result in flow and that individuals
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select flow-inducing media. Empirical results support these assertions. Expecting to
feel flow motivates media selection (Liu, Liao, & Pratt, 2009), balanced difficulty
and ability are necessary to experience flow during media use (Jin, 2012), autotelic
personality (flow propensity) modulates flow during media use (Keller & Blomann,
2008), and flow modulates media effects (Matthews, 2015). Experimental research
shows an inverted-U shaped pattern where self-reported flow is highest when task
difficulty ~ individual ability and lowest when task difficulty # individual ability
(Huskey, Craighead, Miller, & Weber, 2018). We seek to replicate this finding:

HI: Self-reported flow will show an inverted-U shaped pattern with self-reported
flow highest when task difficulty ~ ability and lowest when task difficulty #
ability.

Harris, Vine, and Wilson (2017) show a dissociation between objective and sub-
jective measures of effort during flow-inducing media use. Subjectively, participants
perceive that effort increases linearly with task difficulty, whereas eye tracking and
psychophysiological measures show the greatest cognitive effort when difficulty ~
ability. Behavioral results using secondary task reaction times (STRT; Lang, Bradley,
Park, Shin, & Chung, 2006) also show this inverted-U shaped pattern. Secondary
task reaction times are longest when task difficulty ~ individual ability (Huskey,
Craighead et al., 2018; Castellar, Antons, Marinazzo, & Van Looy, 2019). Clearly,
flow requires motivated attention. We will replicate this finding:

H2: STRTs will show an inverted-U shaped pattern where STRTs will be longest
when task difficulty ~ ability and fastest when task difficulty # ability.

These replication hypotheses function as a manipulation check. Given that repli-
cation is also foundational to cumulative communication science (McEwan,
Carpenter, & Westerman, 2018), these hypotheses provide critical information
about the replicability of core findings in the flow literature.

The Synchronization Theory of Flow During Media Use

Scholars are beginning to probe the cognitive and neurobiological foundations of
flow with a growing number of studies testing synchronization theory (Weber et al.,
2009). Synchronization theory’s key proposition is that flow experiences during me-
dia use are underpinned by a discrete and energetically efficient pattern of func-
tional brain connectivity (synchrony) between cognitive control and reward
networks (RNs) when media difficulty (e.g., how challenging the media is to use)
and individual ability at using the media are both high and balanced. Empirical
results support synchronization theory’s core tenets (Harris, Vine, & Wilson, 2017).
Flow is associated with neural activity in cognitive control and RNs (Klasen, Weber,
Kircher, Mathiak, & Mathiak, 2012; Ulrich, Keller, & Gron, 2016), and structures in
these networks are functionally connected during flow (Huskey, Craighead et al,,
2018). Moreover, research shows a U-shaped pattern where the brain is more
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energetically efficient when task difficulty ~ individual ability (Huskey, Wilcox, &
Weber , 2018). We now turn our attention to two as-of-yet untested predictions:
flow is associated with a modular and discrete brain network architecture.

Modularity and Brain Network Organization

Modularity is a widely used indicator of the extent to which local intra-module con-
nections in the network are denser than global inter-module connections (Rubinov
& Sporns, 2010). Dense local intra-module connections and sparse global inter-
module connections indicate a more segregated network, whereas sparse local intra-
module connections and dense global inter-module connections indicate a more in-
tegrated network. Importantly, more modular brain networks optimally balance the
tradeoff between network segregation-integration and energetic efficiency
(Bullmore & Sporns, 2012). Previous research has shown that the brain network to-
pology associated with flow is energetically efficient (Huskey, Wilcox et al., 2018). If
modularity and metabolic efficiency are positively related, then:

H3: Modularity will show an inverted-U shaped pattern where modularity is
highest when task difficulty ~ ability and lowest when task difficulty # ability.

Synchronization as a Discrete State

Synchronization theory predicts that brain structures implicated in cognitive control
and reward are functionally connected during flow. What are the properties of this
connectivity? Two or more brain structures are considered functionally connected
when their neural responses oscillate at the same frequency. When this happens,
these brain structures are described as being synchronized. When two or more
structures are in sync, they are thought to be working together and this synchrony
process can be expanded beyond two structures to understand how a constellation
of brain structures work together as a network (Bassett & Gazzaniga, 2011). Brain-
network topologies are discrete network states and correspond with discrete psycho-
logical states (Davison et al., 2015). Notably, the brain shifts between different
brain-network topologies to execute various behavioral and psychological responses
(Gu et al,, 2015). Synchronization theory predicts a discrete brain network organiza-
tion among cognitive control and RNs that is synchronized and highly stable
(Fisher, Lonergan, Hopp, & Weber, 2020), which means that structures within these
networks should be least flexible (reconfigure the least) during flow. Therefore:

H4: Flexibility will show a U shaped pattern where flexibility is lowest when
task difficulty ~ ability and highest when task difficulty # ability.

Importantly, synchronization is just one possible brain-network state (Tognoli
& Kelso, 2014). During synchrony, strong coupling means nodes in the network are
trapped in states of phase and frequency locking and therefore cannot leave the
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attractor without some external force. The second state is fully uncoupled nodes
that are segregated from one another and oscillate at different frequencies. In this
state, nodes in the system will never be drawn toward a stable attractor.
Synchronization theory is built on this logic. Nodes in a network either are, or are
not, synchronized (Weber et al, 2009, pp. 409-410). However, the theory of
Coordination Dynamics argues that persistently synchronized (or unsynchronized)
brain-network states are rare because the brain more commonly shifts in and out of
sync, a term called metastability (Tognoli & Kelso, 2014). When the brain is in a
metastable state, it will show a transiently synchronized and unsynchronized state.
This is called metastability because the system is attracted by the synchronized and
unsynchronized states, but will not be trapped by either. Metastability offers a po-
tential alternative explanation for the neural basis of flow. Evidence shows metasta-
ble brain dynamics for a variety of perceptual, cognitive, and social tasks and that
metastability can be energetically efficient (Tognoli & Kelso, 2014). This leads to
competing hypotheses, the first drawn from synchronization theory, the second
drawn from coordination dynamics theory:

Hb5a: Synchrony will show an inverted-U shaped pattern where synchrony is
highest when task difficulty ~ ability and lowest when task difficulty # ability.

H5b: Metastability will show an inverted-U shaped pattern where metastability
is highest when task difficulty ~ ability and lowest when task difficulty #
ability.

Given that synchronization theory implicates cognitive control and RN in flow,
hypotheses 4, 5a, and 5b will be tested among subnetworks containing nodes within
the fronto-parietal control network (FPCN; implicated in cognitive control), the re-
ward network (RN), and a combined fronto-parietal and reward network (FPRN).
We will also conduct our analysis on the whole-brain to clarify how specific our
results are to a given subnetwork.

Implications for Communication Theory

Communication scientists have long theorized about how a balance between high
task difficulty and high individual ability can cause flow during media use (Sherry,
2004). We articulate our study’s contributions to these endeavors using criteria
common to communication science (DeAndrea & Holbert, 2017). Our first two hy-
potheses replicate important findings in the flow literature and provide confidence
in our understanding of how media content induces flow. Our hypotheses specify
specific U or inverted-U shaped patterns of results; a formalization that elucidates
contingency by specifying exactly when media content should, or should not, con-
tribute to self-reported, behavioral, and neural markers of flow. Finally, our multile-
vel approach provides a more complete explanation of communication processes
(Huskey et al., 2020).
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Possibly most important is our study’s capacity to elucidate the mechanisms by
which media contribute to flow. We do this in multiple ways. First, we test the pre-
cise conditions when media content causes flow. Second, our study illuminates the
cognitive and biological processes that underpin flow. In doing so, we clarify by
what mechanisms media content contributes to flow.

Methods

We report results from two studies: (i) a lab-based behavioral experiment, and (ii) a
direct replication that also gathered functional magnetic resonance imaging (fMRI)
data.

Open Science Practices
Consistent with recent calls for open science in communication research (Bowman &

Keene, 2018; Dienlin et al., 2020), the project includes open data and materials (OSF
https://osfio/bxvhr/; GitHub https:/github.com/cogcommscience-lab/flow-dynamic).
The fMRI data are organized in compliance with the Brain Imaging Data Structure
(Gorgolewski et al., 2019) and are available on OpenNeuro (https://doi.org/10.18112/
openneuro.ds003358.v1.0.0).

Power Analysis
An a priori power analysis was conducted for the behavioral study using G*Power

(Faul, Erdfelder, Lang, & Buchner, 2007). We used the smallest effect size reported
in Huskey, Craighead et al. (2018) to estimate a repeated measures analysis of vari-
ance (ANOVA) with o = .05, power (1 — ) =.95, and (V) =.39, which returned
n=104. There is no known procedure for calculating a power analysis for network
neuroscience studies, although our sample size is consistent with other published
research.

Participants
Five participants were excluded from the behavioral study for non-compliance. This

resulted in a final n=107 undergraduate students recruited from Texas Tech
University. Three participants were excluded from the fMRI study, one for an ab-
normal radiological reading, two who requested to terminate their participation
during fMRI scanning. This resulted in a total of n =35 participants recruited from
The Ohio State University and the surrounding community. Participants in the
fMRI study were right-handed, had normal or corrected to normal vision, and did
not demonstrate any contraindication to fMRI scanning (Table 1). Both studies
were approved by the host University’s Institutional Review Board.
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Table 1 Summary Statistics Describing the Participants Samples in Each Study

Experiment Final Mean Age % Mean Self- % %
n (Standard Female Reported Video Student Caucasian/
Deviation) Game White
Ability®
Behavioral 107 20.61 (1.72) 56.00 3.95 (1.92) 100 46.67
Experiment
fMRI Experiment 35 25.00 (6.40) 45.71 4.11 (1.68) 71.43 48.57

“Self-reported video game ability was using a seven-point single item measure (as vali-
dated in Huskey, Craighead et al., 2018).

Stimulus and Experimental Manipulation
Participants in both studies played Asteroid Impact (Supplementary Data, Section 1).

Consistent with previously validated techniques for inducing flow using Asteroid
Impact (Huskey, Craighead et al., 2018), we manipulated three experimental condi-
tions: low-difficulty or boredom (difficulty <ability), high-difficulty or frustration
(difficulty >ability), and balanced-difficulty or flow (difficulty ~ ability). In the low-
difficulty condition, the asteroid speed was slow and did not change. In the high-
difficulty condition, asteroid speed was consistently fast. In the balanced-difficulty
condition, the game started at a moderately high level of asteroid speed (difficulty)
and an algorithm adjusted asteroid speed based on player performance. Asteroid
speed was the only thing that differed between conditions.

Dependent Measures
Behavioral and self-report measures were collected in both studies; neuroimaging

data were collected in the fMRI study. Dependent fMRI measures are drawn from
network science.

Self-Reported Flow and Enjoyment
Self-reported flow was measured using the Autotelic Experience subscale of the

Event Experience Scale (FFS-2; Jackson & Eklund, 2004). For convergent validity
purposes, we also measured self-reported video game enjoyment (Bowman, Weber,
Tamborini, & Sherry, 2013).

Secondary Task Reaction Time
Participants responded to an audiovisual STRT probe while playing Asteroid

Impact. Previous research shows that Asteroid Impact accurately measures STRTs
(Calcagnotto, Huskey, & Kosicki, 2021). The probe was a semi-opaque red circle
along with a tone (sine waveform, 440.0 Hz). Probes were shown equally in one of
four game corners. A total of 68 probes were shown during each condition. The
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interstimulus interval was drawn from a truncated Gaussian probability distribution
(lower bound = 3000 ms; upper bound = o00). Interstimulus interval and probe
locations varied between experimental conditions but were identical within condi-
tions. Participants were told to respond to probes as quickly as possible by pressing
the spacebar key (behavioral study) or a button box (fMRI study) using their non-
dominant hand. Secondary task reaction time was calculated as the latency between
probe onset and the subsequent key/button press.

Modularity and Flexibility
Modularity is the extent that nodes in a network have dense intra-module connec-

tions but sparse inter-module connections. Following the latest guidelines (Yang
et al., 2020), we applied a generalized Louvain community detection algorithm that
assigns nodes to putative communities and generates modularity metrics based on
community assignment (Supplementary Data, Section 2). Nodal flexibility, defined
as changes in community membership for each node, is calculated by counting the
number of times a node switches its community membership over time normalized
by the total possible number of changes (Bassett et al., 2011). Flexibility averages
these changes over nodes within a network (Supplementary Data, Section 2).

Synchrony and Metastability

Synchrony and metastability capture neural phase oscillations (Tognoli & Kelso,
2014) and are calculated from the instantaneous phasic neural time series data
(Supplementary Data, Section 3). Synchrony measures the strength of phase-
coupling between all nodes in a network with values ranging between one (pure syn-
chronization) and zero (pure independence). Metastability measures the variability
of the collective coupling strength.

Experimental Procedure Behavioral Study

Participants were seated at an individual cubicle with a desktop computer, a 23-inch
monitor, and a pair of over-ear headphones. Participants first completed a brief de-
mographic questionnaire before completing three 60 s training rounds (respond to
STRT probes, play Asteroid Impact without STRT probes, play Asteroid Impact with
STRT probes). Participants were then randomly assigned to one of six orders where
they completed each experimental condition (low-difficulty, high-difficulty, bal-
anced-difficulty). Each experimental condition lasted 240 s. At the end of each ex-
perimental condition, participants completed the self-reported flow and enjoyment
measures. The procedure lasted about 30 min.

fMRI Study
The fMRI study followed all the same procedures as the behavioral study with three

minor changes. Participants: (i) completed a training session outside of the scanner
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using a 15-inch laptop and a trackball, (ii) completed a training session, also using a
trackball, once they were positioned in the fMRI scanner, and (iii) were paid $45.00.
Each session lasted 2 h.

STRT Data Cleaning

The STRT analysis was determined a priori based on previous research (Huskey,
Craighead et al., 2018). Reaction times were capped at 1500 ms, and the harmonic
mean was calculated. It is possible that our results are contingent on the analytical
procedure employed (Witt, Kemmerer, Linkenauger, & Culham, 2020). To test this,
we also conducted a multiverse analysis (Steegen, Tuerlinckx, Gelman, &
Vanpaemel, 2016), where we systematically varied 24 different cleaning procedures
as described by Ratcliff (1993).

Self-Report Data Cleaning

Missing data (behavioral study =.97%, fMRI study =1.55%) were imputed with a
classification and regression trees approach using the mice package (Buuren &
Groothuis-Oudshoorn, 2011) for R (R Core Team, 2020). The self-report data were
then averaged for each scale for each condition. Following Hayes and Coutts (2020),
reliability was evaluated using McDonald’s omega () using the psych package
(Revelle, 2018) for R.

Statistical Modeling of Self-Report and STRT Data

Repeated measures ANOV As were modeled using the rstatix package (Kassambara,
2020) for R. Variables of interest (STRT, self-reported flow, self-reported enjoy-
ment) were entered as within-subjects factors. In instances where the sphericity as-
sumption was violated, Greenhouse-Geisser corrected degrees of freedom are
reported, noting that Greenhouse-Geisser corrected degrees of freedom can include
decimals in the numerator and denominator. Two-tailed paired-samples ¢-tests
were used to evaluate pairwise comparisons. Familywise error rate was controlled by
false discovery rate (FDR) correction at the model level.

fMRI Acquisition and Preprocessing

The fMRI data were preprocessed using fmriprep (Esteban et al., 2019) and denoised
using XCP engine (Ciric et al., 2018). For complete details, see Supplementary Data,
Section 4.

fMRI Analysis

Defining the Network

We defined brain network nodes using a recently published brain atlas
that augments the canonical Power atlas (Power et al., 2011) with newly identified
nodes in subcortical structures (Seitzman et al., 2020). This atlas consists of

Journal of Communication 00 (2021) 1-27 9

1 Z0Z JaquiaAopN /| uo npa‘sirepon@Asysnymi Ag S195Z9/y10gebl/ool/e601 01 /10p/aonie-aoueApe/ool/woo dno-oiwepese//:sdiy woll papeojumod



article-lookup/doi/10.1093/joc/jqab044#supplementary-data

article-lookup/doi/10.1093/joc/jqab044#supplementary-data

Flow Dynamics During Media Use R. Huskey et al.

300 functionally-defined nodes from cortical and subcortical brain regions. Next, we
used NiLearn’s (Abraham et al., 2014) fit_transform function to extract time series
from the preprocessed and denoised functional images, which resulted in 120 (TR)
x 300 (nodes) time series for each experimental condition and each participant. To
capture the dynamic properties of functional connectivity between nodes in the net-
work, we applied a non-overlapping sliding window technique (Telesford et al.,
2016) and separated each time series into four sequential 30 TR (60 s) windows.

Time series within each window were then correlated using a Ledoit-Wolf esti-
mator (Supplementary Data, Section 2). Off-diagonal entries were set to zero.
Correlation matrices were then group-level averaged, which resulted in 3 (experi-
mental condition) x 4 (time window) 300x300 adjacency matrices, where each row/
column represents a given node defined by the brain atlas (Figure 1). The adjacency
matrices were then thresholded such that only the strongest 30% of connections
were retained, and these connections were then binarized (Rubinov & Sporns,
2010). Finally, for each condition, we constructed a multilayer network by linking
the adjacency matrix for each window with the adjacency matrix in the window be-
fore and after, by adding edges from nodes to themselves in the neighboring window
(Figure S2; Sizemore & Bassett, 2018). Modularity and nodal flexibility were then
calculated on this multi-layer network.

Null Model Construction for Modularity and Flexibility Analysis

To determine if the observed flexibility and modularity for each experimental condi-
tion differed significantly, we constructed a dynamic null network model using a
randomly permuted times approach (Sizemore & Bassett, 2018). This approach ran-
domly permutes the time when a connection between two nodes occurs while pre-
serving the overall number of connections. We used the empirically observed
temporal adjacency matrices to generate 1000 randomly permuted null models for
each experimental condition and each time window. Then we applied the multilayer
network community detection algorithm described above and computed flexibility
and modularity statistics for each null model which resulted in a null distribution
for inferential testing using a paired-samples f-test approach as described by
Snijders and Borgatti (1999). Flexibility was calculated for the global brain network
(GB), FPCN, RN, and a subgraph that included FPCN and RN nodes (FPRN).

Frequency Domain Analysis

Synchrony and metastability were evaluated in the frequency domain for the dense
graph (Supplementary Data, Section 4). We calculated the Kuramoto order parame-
ter (Acebron, Bonilla, Pérez Vicente, Ritort, & Spigler, 2005) for each TR for each
participant and each experimental condition within the GB, FPCN, RN, and FPRN.
Synchrony was computed by averaging the Kuramoto order parameter over all time
points and metastability is the standard deviation of the Kuramoto order parameter
(Alderson, Bokde, Kelso, Maguire, & Coyle, 2020). This procedure lends itself to
standard inferential testing using repeated measures ANOVA. Variables of interest
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Figure 1 Network neuroscience analysis pipeline. (A) Define 300 nodes (10 mm diameter
binary spheres for cortical nodes and 8 mm diameter binary spheres for subcortical nodes)
across 14 brain networks in standard MNI152 brain space. (B) For each preprocessed partic-
ipant for each experimental condition, use the fit_transform function in nilearn toolbox to
extract the BOLD signal. The time series data were then sliced into four non-overlapping
time windows. (C) The time series data were correlated to construct adjacency matrices,
which were used to construct the brain networks. The adjacency metrics define the undi-
rected edges between any two nodes. The brain networks were averaged across participants
to generate group-level networks. (D) The group-level adjacency matrices were thresholded
and binarized. (E) Using the adjacency matrices, we can visualize the brain network in stan-
dard brain space or in a network space. (F) A community assignment algorithm applied to
the multilayer network returned the community assignment for each node at each time win-
dow for each experimental condition.

(metastability, synchrony) for the GB, RN, FPCN, and FPRN were entered as
within-subjects factors. Paired-samples t-tests (two-tailed) were FDR corrected.

Results

Self-Reported Flow and Enjoyment

The self-reported flow scale was reliable (®’s >.81; Supplementary Data, Section 5).
The repeated measures ANOVA, testing the effect of condition on self-reported
flow, was significant for the behavioral (F(1.81, 191.84) =46.936, p <.0001,
n’G =.157) and fMRI (F(2, 68) =22.931, p <.0001, °; =.288) studies. In both stud-
ies, the flow >boredom pairwise comparison was not significant, although the
flow >frustration pairwise comparison was (Table 2). H1 is partially supported for
self-reported flow.
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Table 2 Means and Standard Deviations for Secondary Task Reaction Times, Self-
Reported Flow, and Self-Reported Enjoyment fMRI Study

Dependent Variable (a) Boredom (b) Flow (¢) Frustration
Mean Mean Mean (Standard
(Standard Deviation) (Standard Deviation)
Deviation)
STRT
Behavioral Study  519.617 (117.597)°  556.629 (131.230)°  526.227 (204.254)
fMRI Study 491270 (77.5612)°  518.396 (85.540)°  485.571 (107.580)
Self-Reported Flow
Behavioral Study 3.171 (1.063)¢ 3.222 (.964)° 2.250 (1.086)*°
fMRI Study 2.936 (.856)° 3.164 (.754)° 2.057 (.659)ab
Self-Reported Enjoyment
Behavioral Study 4.028 (1.786)> 4.404 (1.781)* 2.918 (1.843)*
fMRI Study 3.493 (1.561) 4.214 (1.432)* 2.521 (1.375)*

Note: For each row, superscripted text indicates statistically significant pairwise compar-
isons (two-tailed) after FDR correction for multiple comparisons at the p < .05 level.

The self-reported enjoyment scale was reliable (w’s > .88; Supplementary Data,
Section 5). The repeated-measures ANOVA model, testing the effect of condition
on self-reported enjoyment, was significant for the behavioral (F(1.84,
194.98) =35.552, p < .0001, n°g = .11) and fMRI (F(2, 68) = 15.711, p <.0001,
n’G =.189) studies. Pairwise comparisons were significant for flow >boredom and
flow >frustration (Table 2). To the extent that self-reported enjoyment is conver-
gently valid with self-reported flow, H1 is supported.

STRT Results

After Greenhouse-Geisser correction, the repeated measures ANOVA, testing the
effect of condition on STRT, was not significant for the behavioral study (F(1.49,
157.7) =3.053, p =.065, n°G =.011). However, the model was significant for the
fMRI study (F(2, 68) =3.427, p =.038, 1’6 =.025). In both, STRTs were significantly
longer in the flow >boredom pairwise comparison. Secondary task reaction times
were not significantly different for the flow >frustration pairwise comparison for
both the behavioral and fMRI studies (Table 2). Therefore, H2 is partially
supported.

Multiverse analyses revealed a consistent pattern of results (Supplementary
Data, Sections 6-7). Of the 24 models for each study, 21 were significant for the be-
havioral and 11 were significant for the fMRI studies. Even after FDR correction at
the model level, STRT's were significantly longer for the flow >boredom comparison
for all 24 of the behavioral and 22 of the fMRI models. After FDR correction, STRT's
were significantly longer in the flow >frustration comparison for just two of the
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Figure 2 Modularity and flexibility at different thresholds. (A) Modularity for different
thresholds (ranging from 10% to 50%). (B) Flexibility across different brain systems (GB,
FPCN, RN, and FPRN) at different thresholds (ranging from 10% to 50%).

behavioral and two of the fMRI models. These results show strong support for the
flow > boredom comparison, but marginal support for the flow > frustration
comparison.

Modularity and Flexibility
FDR -corrected two-tailed paired-sample t-tests show that the flow condition is

more modular than the frustration (t =2.948; p =.008) but not the boredom condi-
tion (+=1.731; p=.118; Figure 2A; Supplementary Data, Section 8). H3 is partially
supported.

The flexibility analysis partially supports H4 (Figure 2B; Supplementary Data,
Section 8). Within the RN, the flow condition is significantly less flexible than the
frustration (t =—3.135, p=.008) and boredom conditions (t =—4.065; p <.001).
However, opposite to H4, the FPCN has the highest flexibility during the flow con-
dition compared to the frustration condition (t=3.059; p=.008), although the
comparison to the boredom condition was not significant (t=2.001; p=.076).
Similarly, flexibility within the combined FPRN is not statistically different when
comparing the flow >frustration contrast (t=2.154; p=.063) or the
flow >boredom contrast (t =1.428; p =.192). Finally, at the GB level, flexibility in
the flow condition is not significantly different from the frustration condition
(t=.259; p=.811) or the low-difficulty condition (¢t =.239; p = .811).

Network measures can vary at different thresholds. Thus, we conducted a sensi-
tivity analysis on sparse binary graphs retaining between 10% and 50% of the stron-
gest connections. The results are reported in Figure 2. At most thresholds, we see
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the identical inverted U-shaped pattern for modularity, although we note that this
pattern disappears at very low thresholds (Figure 2A). A similar pattern of results is
also observed for the flexibility analyses (Figure 2B).

Synchrony and Metastability

For synchrony, repeated measures ANOVA models testing the effect of condition
on synchrony showed that, for the GB (F(2, 68) =4.001; p =.023; n°G =.041), FPCN
(F(2, 68) =3.840; p =.026; n’ =.055), and FPRN (F(2, 68) =5.347; p =.007;
n’G =.079) were all significant. The RN (F(2, 68) =2.141; p =.125; > =.042) was
not significant. Global brain network showed the predicted inverted-U shaped pat-
tern of results, although only the flow >boredom comparison was significant.
Unexpectedly, the FPCN and FPRN showed a U-shaped pattern of results where
synchrony in the flow condition was lowest, although only the pairwise comparison
between the frustration and flow condition was significant. Therefore, only the GB
results partially support H5a.

For metastability, repeated measures ANOV A models testing the effect of condi-
tion on metastability showed that the FPCN (F(2, 68) =1.961; p =.149 G =.029)
and RN (F(2, 68) =2.421; p =.096, 1126 =.051) were not significant, as were all pair-
wise comparisons. Only the GB (F(2, 68) =2.104, p =.013, n’G =.024) and FPRN
(F(2, 68 =3.643, p =.031, i =.056) models were significant. For the FPRN, meta-
stability was lowest in the flow condition compared to the frustration condition.
None of these results matches the pattern predicted in H5b (Table 3 and
Supplementary Data, Section 9).

Discussion

This study investigated how task difficulty modulates self-reported, behavioral, and
neural responses associated with flow. We used a naturalistic video game to experi-
mentally manipulate three conditions: boredom (low-difficulty), frustration (high-
difficulty), and flow (balanced-difficulty). This decision let us replicate previous self-
report and behavioral findings in the flow literature, examine the brain network to-
pology associated with flow, and test alternate mechanistic explanations for the neu-
ral basis of flow. We consider each of these in turn while also discussing broader
implications and next steps for communication theory.

Replicating Key Findings in the Flow Literature

Do previous findings replicate? Yes, but with some caveats. For both the behavioral
and fMRI studies, we observed the predicted inverted-U shaped pattern of results
where self-reported flow, self-reported enjoyment, and STRTs were highest in the
flow condition. However, not every predicted relationship was statistically
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Table 3 Means and Standard Deviations for Synchrony and Metastability by Experimental
Condition

(a) Boredom (b) Flow (¢) Frustration
Mean (Standard Mean (Standard  Mean (Standard

Dependent Variable

Deviation) Deviation) Deviation

Synchrony

Global .0953 (.0197)bc .1070 (.0312)* .1060 (.0257)*

Frontal-parietal .3920 (.0654) 3640 (.0511)° .3950 (.0597)b

Reward 4460 (.0519) 4350 (.0506) 4210 (.0481)

Frontal-parietal and reward .3010 (.0512) .2800 (.0393)° 3130 (.0498)°
Metastability

Global 0495 (.0115) 0549 (.0168) 0527 (.0144)

Frontal-parietal .1650 (.0198) .1580 (.0184) .1650 (.0216)

Reward .2000 (.0212) .0202 (.0202) .1890 (.0209)

Frontal-parietal and reward

.1320 (.0175)

.1250 (.0160)°

.1340 (.0168)°

Note: For each row, superscripted text indicates statistically significant pairwise compar-
isons (two-tailed) after FDR correction for multiple comparisons at the p < .05 level.

significant. As we will show, instances where a result failed to replicate, are just as il-
luminating as successful replications.

Self-Reported Flow
Self-reported flow showed the predicted inverted-U shaped pattern (H1); however,

the flow condition was only significantly different from the frustration condition for
both the behavioral and fMRI studies. As a form of convergent validity, we also
measured self-reported enjoyment, which did show the predicted inverted-U shaped
pattern in both studies.

Why were we unable to perfectly replicate previous findings related to self-
reported flow? Previous research using Asteroid Impact to manipulate flow experi-
mentally (Huskey, Craighead, et al., 2018) allowed the number of asteroids and tar-
gets to vary between experimental conditions. These studies also allowed
participants to advance between multiple levels, provided moment-by-moment
feedback on progress toward advancing to a new level, and made it clear when a
participant advanced to a new level. These manipulations reinforced causal flow
antecedents: clear and distinguishable goals and immediate performance feedback.

Unfortunately, these differences muddied interpretation of the earlier fMRI
results (Huskey, Craighead et al., 2018). Accordingly, the present study replaced lev-
els with an “endless” play-mode while also holding the number of asteroids and tar-
gets constant. As a result, we maintained just one causal flow antecedent: the high
task difficulty and high individual ability balance. Removing two causal flow antece-
dents may have weakened our manipulation.
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We also note that the pairwise comparison between the flow and boredom con-
ditions in study three by Huskey, Craighead, et al. (2018) also showed a small (but
statistically significant) effect using the same self-reported flow scale. We observed
the expected pattern of results for both the behavioral and fMRI studies reported in
this manuscript; however, the absolute difference between these conditions was
small. We may have been underpowered to detect the effect. Supporting this inter-
pretation, self-reported flow effect sizes observed in our study are approximately
one-third the magnitude of those observed in Huskey, Craighead et al. (2018).

The second potential issue relates to the FSS-2 Autotelic Experience subscale’s
(Jackson & Eklund, 2004) measurement validity. Measurement validity is the extent
to which a measure assesses what it purports to measure and nothing else.
Presumably, this subscale measures intrinsic reward. However, the “I loved the feel-
ing of performance and want to capture it again” item may capture something that
is not uniquely about intrinsic reward. Therefore, participants in the boredom con-
dition may have also rated this item highly. Paired samples t-tests show no signifi-
cantly different responses to this item between the boredom and flow conditions for
the behavioral (#(106) =—.985, p = .327) and fMRI (#(34) =—1.18, p =.245) studies.
The FSS-2 was validated on observational data, and therefore, might be suboptimal
for capturing self-reported flow in experimental contexts that include a boredom
comparison condition.

As a final consideration, our boredom condition was designed to elicit boredom,
and it could be that our task was suboptimal. Experimentally inducing boredom us-
ing active tasks is non-trivial, and some of the best inductions are considerably
more mundane than playing a video game (Markey, Chin, Vanepps, & Loewenstein,
2014). There is also debate about what causes boredom. Our study drew on
Csikszentmihalyi’s (1990) conceptualization that boredom occurs when individual
ability exceeds task difficulty. Others have conceptualized boredom as a negative af-
fective state that lacks goal-oriented behavior (Mathiak et al., 2013) or instances
where a task requires but does not elicit executive control (Danckert & Merrifield,
2018). Our task was goal-oriented (collect targets, avoid asteroids). Nevertheless,
our results indicate that participants allocated attentional resources away from the
task and self-reported low enjoyment for the boredom condition. Together, these
suggest a successful, albeit imperfect, manipulation. Future research should design
better boredom-inducing tasks and rely on modern conceptualizations that treat
boredom as resulting from different combinations of attentional demand and task
value (Westgate, 2020).

Replicating STRT's

We also expected STRTs to show an inverted U-shaped pattern with the longest
STRTs in the flow condition (H2). This prediction was based on limited capacity
models of motivated attention (Lang et al., 2006; Fisher, Huskey, et al., 2018; Fisher,
Keene, et al., 2018). When more attentional resources are allocated to Asteroid

16 Journal of Communication 00 (2021) 1-27

1 Z0Z JaquiaAopN /| uo npa‘sirepon@Asysnymi Ag S195Z9/y10gebl/ool/e601 01 /10p/aonie-aoueApe/ool/woo dno-oiwepese//:sdiy woll papeojumod



R. Huskey et al. Flow Dynamics During Media Use

Impact, fewer attentional resources should be available, thus resulting in longer
STRTs.

Both the behavioral and fMRI studies showed the predicted inverted-U shaped
pattern of results. Secondary task reaction times were significantly longer in the flow
compared to boredom conditions. However, STRTs were not significantly longer in
the flow condition compared to the frustration condition. This pattern of results
was confirmed in the multiverse analysis. The flow condition had significantly lon-
ger STRTs compared to the boredom condition in all 24 models for the behavioral
and 22 models for the fMRI studies. By comparison only two of the behavioral and
two of the fMRI models showed that STRTs were significantly longer in the flow
compared to frustration conditions. Clearly there is strong support that the flow
condition was more motivationally relevant than the boredom condition. Support is
less robust when comparing the flow condition to the frustration condition. One in-
terpretation is that the results are sensitive to cleaning procedure.

A second interpretation is that some cleaning procedures are more (or less) pow-
erful depending on the distribution of the STRT data (Ratcliff, 1993). Our power
analysis suggested that n =104 participants were necessary to achieve 95% power
when o =.05. Therefore, our behavioral study was properly powered, but our fMRI
study could have been underpowered.

A third explanation for the mixed STRT results is that our study assumes that
motivation, and therefore attentional allocation and STRTs, are stationary across
time within each experimental condition. An analysis of the STRT's by trial indicates
that this assumption is violated for the frustration conditions (Supplementary Data,
Section 10). Secondary task reaction times are significantly and negatively correlated
with trial in the frustration condition for the behavioral (r = -.349) and fMRI (r = -
.486) studies. Inspection of the results (Figures S14-S15) shows that STRT's start off
slow early on, but drop and somewhat stabilize after ~10 trials (approximately 30 s)
into the frustration condition. This interpretation is shown by a temporal autocorre-
lation analysis. For the frustration condition, some lags for the first ~10 STRT trials
are positively correlated (Figures S14-S15). Moreover, a Ljung-Box test (Ljung &
Box, 1978) reveals that the frustration, and to a lesser extent, the flow conditions do
not meet stationarity assumptions.

It seems that participants are motivated to allocate substantial attentional
resources early on in the frustration condition, but this motivated attentional alloca-
tion quickly subsides over time. If so, our frustration induction is less than ideal be-
cause it takes some time (30 s—60 s) for participants to allocate attentional resources
away from Asteroid Impact as would be expected based on previous research
(Castellar et al., 2019; Huskey et al., 2018). Ultimately, participants self-reported low
levels of flow and enjoyment in the frustration condition, which suggests that the
manipulation eventually induces the expected psychological response, just that this
response takes time to occur. One possible explanation is that participants expect
video games to be enjoyable (Liu et al., 2009). Accordingly, participants may be bi-
ased to allocate more attentional resources early on when playing a video game.
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In sum, both our behavioral and fMRI studies replicate the inverted-U shaped
pattern of STRT results observed in previous research (Castellar, Antons,
Marinazzo, & Van Looy, 2019; Huskey et al., 2018). Our multiverse analysis and in-
vestigation of the STRT time series data suggest there is opportunity for a stronger
experimental manipulation. It is worth pointing out that we were unable to identify
empirical or methodological suggestions for cleaning reaction time data that violate
stationarity assumptions. This represents an opportunity for future methodological
inquiry and advancement.

Modularity and Flexibility

We predicted an inverted-U shaped pattern of results where the brain would show
the most modular network topology during the flow condition (H3). The flow con-
dition was significantly more modular compared to the frustration condition.
However, modularity in the flow condition was not different from boredom. A
consensus-based community assignment analysis of the brain network modules
(Figure S12) shows that the flow condition is modular with a brain-network where
most FPCN nodes exist within communities containing reward-network nodes.

However, our synchrony results also show that synchrony is lowest between
nodes in the FPRN in the flow condition compared to the boredom and frustration
conditions. Previous theorizing (Fisher et al., 2020) as well as empirical results
(Huskey, Craighead et al., 2018) have implicated the salience network in flow. The
consensus-based community assignment analysis (Figure S12) shows that nodes in
the salience network are most commonly grouped in communities with nodes in the
FPCN and reward subnetworks during the flow condition. We interpret this as fur-
ther, albeit data-driven, evidence that the salience subnetwork plays an important,
but as of yet underspecified, role in flow.

More broadly, modular brain-network topologies serve several important func-
tions, including: increasing robustness and resilience to sudden perturbation, reduc-
ing wiring cost, thus making the cognitive processes more metabolically efficient,
and promoting information processing through a hierarchical organization
(Bullmore & Sporns, 2012; Sporns & Betzel, 2016). This maps directly onto core
sync theory assumptions (Weber et al., 2009). Moreover, evidence suggests that
brain segregation (indicated by larger modularity) enhances performance and learn-
ing in various tasks (Bassett et al., 2011). This might explain why flow is associated
with perceptions of a merging of action and awareness, a sense of control, and
effortlessness.

We also note, however, that the relationship between modularity, cognitive con-
trol, and task performance is not completely resolved. For instance, previous re-
search using n-back tasks shows that more GB integration (lower modularity) is
associated with increased task performance (Shine et al., 2016) and increased brain
segregation (increased modularity) is associated with automatic task performance
(Finc et al., 2020). Clarifying the extent to which the brain is integrated or
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segregated during flow and the contribution of integration and segregation to task
performance and subjective experience is a vital next step for synchronization
theory.

We also expected that flexibility would show a U-shaped pattern where flexibil-
ity was lowest during the flow condition (H4). Instead, we see a more complex pat-
tern of results. Previous research shows that lower-level cognitive control tasks are
associated with fairly low flexibility in the FPCN (Telesford et al., 2016). In our
study, we see the lowest FPCN flexibility during the frustration condition. One in-
terpretation, given the sharp drop-off in STRTs after 30 s of gameplay in the frustra-
tion condition (Figure S15), is that participants motivationally disengaged from the
primary task (playing Asteroid Impact) and instead focused their attention on the
STRTs, which is consistent with Huskey, Craighead et al. (2018). In that case, and
over time, the STRT task in the frustration condition became primary and concep-
tually similar to a lower-level cognitive control task.

What then are we to make of the increased flexibility in the FPCN during the
flow condition? Control-theoretic approaches to understanding brain-network orga-
nization during demanding cognitive control tasks argue that the FPCN is flexible
and that this flexibility maintains performance during tasks (Dosenbach, Fair,
Cohen, Schlaggar, & Petersen, 2008). Empirical research supports this theoretical
proposition showing that fast and flexible network connections in the FPCN are
critical for adaptive control deployment during learned tasks and novel tasks (Cole
et al., 2013). Computational models of empirical data suggest a control circuit where
the insula tracks control volatility, the caudate nucleus estimates the amount of con-
trol necessary, and this estimate feeds forward to the FPCN for control deployment
(Jiang, Beck, Heller, & Egner, 2015). Theoretical updates have implicated the sa-
lience network in flow (Fisher et al., 2020); however, our results suggest additional
updates are necessary. Future theorizing and empirical efforts should examine if and
how sync theory intersects with the latest control theory developments. Such efforts
would help account for the high level of FPCN flexibility observed in the flow
condition.

Finally, it is worth noting the low flexibility in the reward network during the
flow condition. Given that most nodes in this network were constrained to one com-
munity in our consensus analysis and reward nodes typically show low flexibility
during cognitive control (Cole et al., 2013), we interpret this as evidence that the re-
ward network shows sustained and stable connections during flow, consistent with
synchronization theory.

Synchrony and Metastability

Lastly, we tested two competing hypotheses for the mechanistic processes underly-
ing flow. We predicted an inverted-U-shaped pattern for synchrony (H5a) and
metastability (H5b), where each was highest in the flow condition. Overall, support
for the metastability hypothesis is relatively weak. Two of the four models were not
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significant. For the significant GB and FPRN metastability models, the overall effect
sizes were lower than the GB and FPRN synchrony models, which indicates that the
synchrony model better explains the data. By comparison, only the RN synchrony
model was not significant. Contrary to our predictions, only the GB synchrony
model showed the predicted inverted-U shaped pattern of results. Although, only
the flow >boredom pairwise comparison was significant. At best, this offers quali-
fied support for sync theory. We say “qualified support” because an examination of
the subnetworks shows significant results in the opposite direction from our
predictions.

Our results show that the FPCN and FPRN have the lowest synchrony during
the flow condition when compared to the frustration condition. Given the flexibility
results described above, we should (post hoc) expect low synchrony in the FPCN
and FPRN since synchrony and flexibility measure two sides of the same coin (syn-
chrony in the frequency domain, flexibility in the time domain). If flexibility goes
up within a subnetwork, this means that nodes within that subnetwork are changing
their modular assignment more frequently over time. Therefore, we should expect
that synchrony within that subnetwork goes down. This is what we see for the
FPCN and FPRN.

The State of Synchronization Theory

Synchronization theory was first published in 2009. Since then, empirical research
into reward-modulated cognitive control has substantially outpaced research inves-
tigating the neural basis of flow. More recent formulations of synchronization the-
ory (e.g., Fisher et al., 2020) have kept pace with these developments and have even
implicated the salience network in flow experiences, although the core prediction of
a synchronization between FPCN and reward subnetworks has prominently
remained in each explication of the theory.

Consistent with synchronization theory, and replicating previous results, our
STRT data demonstrate that flow requires high levels of attentional resources and
that participants are motivated to allocate attention to the flow-inducing task. By
elucidating contingent predictions derived from synchronization theory, we show
that the brain has a more modular organization during flow compared to frustra-
tion. Finally, we show that nodes in the reward subnetwork exhibit the least flexibil-
ity during flow compared to boredom or frustration.

We also see results that contradict synchronization theory. Most notably, syn-
chronization theory predicts high levels of synchrony between FPCN and reward
subnetworks. Contrary to this prediction, we show that nodes in the FPCN are most
flexible during flow. Similarly, nodes in the FPCN and FPRN have the lowest levels
of synchrony when compared to frustration. Our results suggest that synchroniza-
tion theory needs yet another update. Specifically, one that accounts for evidence
showing that the FPCN is flexible during cognitive control—including flow—tasks,
even when reward subnetwork nodes remain inflexible (see Cole et al., 2013).
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Like nearly all theories in communication, synchronization theory is rooted in a
verbal model. One limitation of verbal models is uncertainty about when a hypothe-
sis has adequately been derived, tested, supported, or falsified (Guest & Martin,
2021). As such, we join recent calls for developing formal theory (Fisher &
Hamilton, 2021; Huskey et al., 2020; van Rooij & Baggio, 2021) and argue that for-
mal theoretical models are a vital next step. Control theoretic models (for a review,
see Lydon-Staley, Cornblath, Blevins, & Bassett, 2021) offer a promising opportunity
for formalizing synchronization theory.

Conclusion

In this study, we investigated the relationship between media content, flow, and
brain network dynamics. Our results speak broadly to the field. Flow experiences
during media use have been implicated in well-being. Our results show that flow
corresponds with increased synchrony among structures in reward networks and in-
creased flexibility among structures in the FPCN. Moreover, our project clarifies the
neural systems, and their responses, that researchers should examine in subsequent
research linking measures of well-being with neural responses.
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